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Following a general exposition of the theory of 3-F symbols [ 1 ], we now focus 
on the particular features encountered when dealing with double groups of 
(proper as well as improper) point groups. 

The paper starts with a brief outline of the definition of double groups adopted 
in the present work. After this, some properties of double group 3-F symbols 
are discussed which are independent of the way the 3-F symbols have been 
constructed. The main part of the paper then deals with the actual generation 
of 3-F symbols for the non-commutative double groups. 

In the approach described, the 3-F symbols become determined in part by 
adaption of the standard matrix irreps to subgroup hierarchies and then 
completely, phases included, by the specification of standard basis funct ions 
(or, equivalently, standard subduction coefficients). 

Key words: double groups for proper and improper point groups - -  subduction 
coefficients - -  basis functions for standard irreducible matrix representations 
- -  phase-fixation of three-gamma symbols and coupling coefficients - -  triple 
coefficients. 

I. Introduction 

The present paper provides the necessary link between our previous exposition 
of the general theory of  3-F symbols [1] and the following papers in the series 
which deal with specific double groups or families of double groups [2-5]. 
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The purpose of Sect. 2 is to give definitions, terminology and notation necessary 
for a stringent treatment of double groups in the sequel. Sect. 3 then discusses 
common features of 3-F symbols for double groups, focusing in particular on 
the problem of reality of 3-F symbols and the properties of conjugating matrices. 

The main part of the paper is made up by Sect. 4 which is a description of the 
procedure we have followed for actually generating 3-F symbols for all the 
non-commutative double groups. The main idea is to define 3-F symbols by 
renormalization of subgroup-adapted 3-j symbols. The 3-F symbols thus obtained 
are completely determined, also with respect to phases, by the specification of 
standard subduction coefficients or, equivalently, standard basis functions for the 
subgroup irreps. This procedure for obtaining 3-F symbols is not new. Two of 
the present authors used the corresponding method for obtaining phase-fixed 3-F 
symbols for the point groups in 1972 [6], and since then several others have 
adopted the same or similar approaches for specific groups (see references in 
Sect. 5 and in the following papers [2-5]). The present exposition, however, 
attempts - -  as far as this is possible - -  to follow the philosophy of [6] in 
phase-fixing the 3-F symbols by choosing standard basis functions in a systematic 
way and furthermore points to several pitfalls and aspects seldomly given attention 
to in the literature (Sects. 4.4-4.6). 

It is advantageous to have a phase-fixation which is in some respect "natural" 
of the 3-F symbols one uses, e.g. when applying the Wigner-Eckart theorem [1, 
Sect. 2] with the objective of standardizing parametrizations of quantum-chemical 
model operators (with the reduced matrix elements [1, Sect. 2] as parameters). 
In fact, it was the lack of standardization for parameters of semi-empirical models 
of the ligand field which prompted the first paper [6] on phase-fixed 3-F symbols. 
In complicated calculations based on Wigner-Racah algebra, a consistent choice 
of phases for the 3-F symbols is imperative, and then a "natural" or systematic 
phase-fixation is more safe to have than just an arbitrary phase-fixation. 

2. Definition and properties of double groups of proper and 
improper point groups 

In this section we shall review definitions and properties of double groups to the 
extent that we need these in the ensuing presentation of matrix irreps and 3-F 
symbols for these groups. For somewhat more elaborate treatments we refer to 
[7, Sect. 5.1; 8] and references therein. These references explain why double 
groups are a natural tool in the analysis of certain operators containing a spin-orbit 
coupling term, and [8] discusses the literature and gives some of the history of 
the double groups. 

We shall start by discussing the double groups of proper point groups in Sect. 
2.1 ; by the latter we mean those point groups which are subgroups of the rotation 
group in 3 dimensions, R 3. In Sect. 2.2 we define double groups of improper point 
groups, these latter being point groups which are subgroups of the rotation- 
inversion group R3i but not subgroups of R3. 
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2.1. Double groups of proper point groups 

Double groups of proper point groups are subgroups of R3*, the rotation double 
group (cf. [1] Sect. 6 and references therein). This group is, in particular, itself 
the double group of R 3. The group R3* may, for example, be realized as unitary 
(2 x 2)-matrices with determinant +l ,  that is, it may be identified with the group 
SU(2), or, still differently stated, it may be identified with (its own image under) 
the faithful matrix irrep @E1/2]. In this way, a general element of R3* takes the form 

/COS 10 e -i(~'+ql)/2 -s in  �89 e-/(~-*)/2] ~[1/2](~0, 0, 
~b)=\ sin�89 coslOei(~++)/2 ] 

(2.1.1) 

with the sequence (]�89189 ]�89189 of ]jm) functions (vide infra) and with the param- 
eters r 0, ~0 varying in the ranges 

0_<r 0_< 0-< 7r, 0-< ~0 <4~r. (2.1.2) 

If  r and 0 are numbers chosen in the ranges of (2.1.2) and ~b is a number with 
0 -  < ~O <27r, then the two R*-elements ~e~/2](r 0, ~b) and @E~/2](~, 0, qJ +27r) - and 
only these two - correspond to the rotation (i.e. the R3-element) with Euler angles 
(r 0, 4')- Note that the Euler angles are not uniquely defined in the literature; 
for example, our q~ and q~ correspond to qJ and q~, respectively, of Fano and 
Racah [9]. See [8] for further references to the literature. 

[The particular form of the j = 1/2 matrix representative chosen in (2.1.1) will be 
discussed in Sect. 4 in connection with the description of the action of rotation 
operators on angular momentum eigenfunctions [jm). 

For a mathematical description of the correspondence between R* and R3, there 
is a homomorphism of R* onto R3 mapping the elements @E~/2](~, 0, ~O) and 
~E1/2](r 0, ~ +27r) of R* onto the same element of R3, namely, the rotation with 
Euler angles (r 0, qs). (We are assuming here a coordinate system chosen once 
and for all, so that all R3-rotations may be described with a set of Euler angles 
with r and 0 restricted by (2.1.2) and 0_< qJ <27r).] 

Given an ordinary rotation R with Euler angles 0P, 0, ~0), we wish to have a 
short notation for the two elements of R* which correspond to R in the above- 
described manner - a notation which reminds one of their relation to R and 
which, preferably, is more descriptive than specifying r 0, ~0 themselves. We 
shall employ the convention in this and the subsequent papers that R* means 
the double group element with parameter triple (~, 0, ~0); the element of R* with 
parameter triple (~, 0, ~ +2~-) is then - R *  when regarded as a matrix in the 

y* 
above way. We shall thus meet with expressions like C4 , - C* etc. This notation 
convention is discussed in [8]. 

Z* X* We shall particularly often encounter the R3*-elements C2~/~, C2 , and C Y* 
defined by 

C2~1~ = D~l/2](tx, 0, 0) = (2.1.3) eiO~/2 
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Note that one has to be careful with relations which may seem obvious from the 
relations existing between the corresponding R3-elements; for example, 

C Y* = X* Z*  C2 C2, 

but 

C 2  Y* ~__ z *  x *  - C 2  C2 , 

as one may ascertain from (2.1.3)-(2.1.5). 

If  G is a proper point group, its double group G* is defined to be the set of 
corresponding elements in R*. Thus, G* = {R* I R ~ G} u {-R*] R c G}. 

The irreps of such a double group G* always fall in two distinct non-empty 
classes: (1) the irreps which assign the same matrix to the elements R* and - R *  
for all R in G and which may, therefore, also be regarded as irreps of G;  and 
(2) the irreps which distinguish R* and - R *  for all R in G. All irreps of G arise 
from irreps of G* of the first of these types. The irreps in class (1) are sometimes 
called the vector irreps or the tensor irreps of G*, while those in class (2) are 
called spin or spinor irreps. Unfortunately, the literature does not agree completely 
on these terms. We shall use "vector" and "spin" as defined here. For R* itself, 
the irreps ~EJl with j = 0, 1, 2 , . . .  are of vector type, while those with j = 1/2, 
3,/2, 5 / 2 , . . .  are of spin type. For all the non-commutative double groups, irreps 
of the first Frobenius-Schur kind ([1], Sect. 5.2) are vector irreps and irreps of 
the second F - S  kind are spin irreps, while irreps of the third F - S  kind may be 
either of vector or of spin type. (This is not true for the cyclic double groups C*. 
For example, the non-trivial irrep of C* is obviously of the first kind, but also 
a spin irrep.) 

If Fl, F2, F3 are irreps of a double group G* and dim ~(FIF2F3)>0 (i.e., the 
triple has non-zero triple coefficients), then necessarily an even number of the 
three irreps is of spin type (i.e., either two of them or none of them are spin 
irreps). This is easily proven: 

Let F~, F2, F3 be matrix forms of F~, F2, F3. Let E ~ G be the identity operation 
(the neutral element in G). The elements in G* corresponding to E are 

E * , o r ( ~  ~), a n d - E * , o r ( ;  1 ?1)"  

For a vector irrep F of G* we have F ( - E * )  = F(E*) = +9, while for a spin irrep F 
we have F ( -E*)  = -F(E*)  = - L  Thus if an odd number of F~, F2, and F3 is of 
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spin type and ~ ~ ff(F1F2F3), we have 

= [F,(-E*)|174 

and thus ~ is necessarily zero. 

(fix-vector property) 

2.2. Double groups of improper point groups 

Let G be an improper point group. Since G is not a subgroup of R3, we  do not 
immediately have a definition of a double group of G. However, considerations 
to be found in ([7], Sect. 5.1) and discussed in detail in [8] show that the following 
prescriptions give a natural definition for this situation. We distinguish two cases: 

(i) If G contains the inversion I = $2, it is the direct product of its intersection 
Go with R3 (the subgroup of G consisting of proper rotations) and the inversion 
group $2 = {E, I} = C~, i.e. G = Go x $2. In this case, the double group G* is 
defined to be Go* • $2. 

(ii) If  G does not contain the inversion I, the set containing all the proper 
rotations in G and all the improper ones multiplied by I will be a subgroup G' 
of R 3 isomorphic to G. The double group G* is then defined to be (G')*. 

Examples of case (i) are G = Oh and G = Dab, and examples of case (ii) are G = Td 
and G = D3h , for which we get G ' =  O and G ' =  96 ,  respectively. For a full 
tabulation of the consequences of definitions (i) and (ii), see [8]. 

3. General considerations regarding 3-F symbols for double groups 

3.1. Introduction 

All double groups are simple phase and thus allow complete collections of 3-F 
symbols to be constructed ([1] Sect. 4). In Sect. 4 of the present paper we shall 
explain how we actually generate 3-F symbols for the double groups. In the 
present section we have collected some general considerations which do not 
depend on the particular way in which the 3-F symbols are generated and to 
some extent do not even depend on the group in question being a double group. 

The general theme is that of simplifying the 3-F symbols as much as possible by 
suitably adjusting the matrix irreps. The first parts of this section discuss the 
possibilities of obtaining real 3-F symbols and convenient forms of conjugating 
matrices ([1] Sect. 5). Sect. 3.5 then gives examples of relations satisfied in certain 
cases by 3-F symbols as a direct consequence of their fix-vector property. The 
last part, 3.6, is concerned with the definition of 3-F symbols for double groups 
of improper point groups. 

One remark is in place-here. From Sect. 2.1 it is seen that if we construct 3-F 
symbols for the double group G* of a proper point group G, we get, in particular, 
a full set of 3-F symbols for G (because we get, in particular, 3-F symbols for 
all irrep triples consisting of three vector reps). It might seem, then, that the 
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present work makes that of [6] superfluous. However, in [6] all irreps were chosen 
to have certain real matrix forms (only the ambivalent point groups were con- 
sidered). In the present work irreps of  the first kind are in an interplay with irreps 
of  the second and third kinds, and those real matrix forms of the first-kind irreps 
are usually not suitable if the various requirements listed below in this section 
are to be fulfilled. Thus the 3-F symbols of the subsequent papers generally 
correspond to other standard matrix forms of the irreps than those of [6]. They 
are thus generally incomparable, but both kinds may be useful, depending on 
the application to be made. 

3.2. Reality of 3-F symbols 

We shall meet with three general situations where a choice of a complete set of 
real 3-F symbols is possible: 

(i) Group generators with symmetric irrep matrices 
Suppose a given simple phase group is generated by elements Rl, R2, . . .  If  we 
can establish the situation that for every standard matrix irrep F of the group, 
the matrices F(R1), F(R2) , . . .  are all symmetric matrices, then the family of 
standard matrix irreps selected allows real 3-F symbols to be chosen. This fact 
is proved in the appendix. 

(ii) Group generators with real triple tensor products of irrep matrices 
Suppose, as in (i), that a group is generated by elements R1, R2 , . . .  If we can 
establish the situation that for every triple FIFzF3 of standard matrix irreps of 
the group having non-zero triple coefficients, the matrices 

r , (Rl) |174 r , (R2)|  

are all real matrices, then the family of standard matrix irreps selected allows 
real 3-F symbols to be chosen. This is also proved in the appendix. The condition 
is evidently satisfied when all standard irreps are real matrix reps (as was the 
case in [6]). In the present work we may sometimes have the condition satisfied 
by having the situation that for all vector-type standard matrix irreps • of a given 
double group,  the matrices •(Rl), F (R2) , . . . ,  are all real, and for all spin-type 
standard matrix irreps F the generator irrep matrices F(R0,  F(R2) , . . .  are all 
purely imaginary (to see that the condition is then satisfied, use the remark from 
Sect. 2.1 that for all irrep triples with non-zero triple coefficients, an even number 
of the irreps is of spin type). 

(iii) Irrep conjugation by the irrep matrices of a fixed group element 
This is the situation described in ([1] Sect. 5.5), to which we refer for a detailed 
discussion. 

3.3. General remarks on conjugating matrices 

In ([1], Sect. 5.3) we showed how 3-F symbols of the form (F1GF/yOy') are used, 
in the present formalism, for conjugating individual irreps F in the 3-F symbols. 
The formulas there were kept at a rather general level; here we indicate how they 
may, in the cases to be treated below, be somewhat simplified. 
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It has turned out to be in all cases compatible with our other requirements to 
have 3-F symbols (F1GF/y07')  of the simple form 

( F  ,o  F )  
3' 0 3" = (dim F)-l/2q~r(3')6(% O-r(3")), (3.3.1) 

where q~r is a function with ~r(3 ')= +1 for all 3' and O'r is a permutation of the 
components. Thus the conjugating matrix for F defined by ([1] (5.3.3)) has the 
form of a permutation matrix, possibly with varying signs on the non-zero 
elements. ("Permutation matrix" means a matrix obtained by some permutation 
of the rows (or of the columns) of a unit matrix.) This turns, e.g. formula (5.3.4) 
of [1], applied to 3-F symbols, into 

3'1 ')/2 ")/3 /3 T[ 3'2 3'3 /3 

( F, F2 F3) (3.3.2) 
=~r ' (~r ' (3") )  ~r,(3',) 3'2 3'3 /3' 

and for the conjugation of all three irreps we get 

(El  F2 F3) = ~r,(6rr,(yl))qorz(crr2(3'2))qOr3(6rr3(3'3)) 
3'1 3'2 3'3 /3 

•  Ft F2 F3 ) (3.3.3) 
\ OrFl(3'l) O'F2(3'2) O'F3(3'3) /3 

Formulas like (3.3.2) and (3.3.3) are easy to use; given a table of the 3-F symbols 
(3.3.1), one immediately reads off what o>(3') and q~r(O'r(3')) are for each com- 
ponent 3' of F. This is made even easier than one might think at first sight because 
of the fact that O'r actually necessarily is a product of disjoint transpositions 
(permutations of just two components). This may be seen by recalling that 
conjugating matrices are either symmetric or antisymmetric ([1] Sect. 5.2). As an 
example, we see in ([2] Table 5 (i), concerned with the group D*) that 

(EI/2A,E1/2/�89 0 -�89 = -nF 2. 

Since also rr(E~/2A~E~/2)=-1 (see definition in [1, Sect. 4]), we have further 

(EI/2A,EI/2/_10 �89 = + 4 .  

1 (and therefore crz,/2(-�89 ) = �89 and 1 1 Thus crzl/2(�89 ) = - 5  ~El/2(~) = - 1  and q~E,/,(--~)= 
+1. This means that we get the general conjugation formulae 

.. t~/~ 
" 1 / 2  " ")=( ' ' ' -1/2E' /2  , . . /  

) 
and 

. .  E1/2 

1/2 " )  
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In some cases further facilitation arises because the 3-F symbols of (3.3.1) may 
be given by a convenient explicit formula. The prime example of this is the 
rotation double group with the traditional standards ([1] formula (6.2)). In our 
treatment of the hierarchy I* D C*, a completely analogous formula is established 
([5], (3.2.1)). 

3.4. Subgroup adaption and component designations 

All double-group 3-F symbols to be presented below correspond to standard 
matrix irreps which have been adapted to group-subgroup hierarchies of the form 
G D G~ ~ G2 D . . .  D C*, that is, hierarchies terminating with a cyclic double 
group. The presence of this terminal group implies that we have distinguished 
an element C* c G and have arranged that for all standard matrix irreps F, the 
matrix F(C~*) is diagonal. 

For a given irrep F of G, the adaption to the subgroup hierarchy furnishes us 
with a sequence of subgroup irreps which may be used for labeling the components 
of F. In particular, these strings of irrep symbols terminate with a symbol for an 
irrep of the group C*, or, equivalently, for an eigenvalue of the diagonal matrix 
F(C*). We shall here adopt the general convention that a component designation 
y with respect to C* means an eigenvalue exp (-iy2~'/n) of F(C*). 

We shall make one kind of exception to this convention, however. In most of 
the cases where we have irreps of the third Frobenius-Schur kind ([1] Sect. 5.2), 
adoption of the convention would be in opposition to a fundamental requirement 
of the formalism developed in [1], namely that a standard matrix irrep and its 
complex conjugate have the same component designations for corresponding 
components. Thus, to avoid any confusion, we have given the third-kind irreps 
component designations which are letters, not numbers (the combination of an 
irrep and a component may then be translated into a number which relates to a 
F(C*) diagonal entry, as above). For examples of this, see the cases of the groups 
D* with n odd [2] and the group T* [3]. 

3.5. Simplifying relations satisfied by 3-F symbols 

Given three irreps F1, F2, F3 of a group G and a set of 3-F symbols for FIF2F3, 
the fundamental equation, ([1] (3.1.2)), of course imposes some restrictions on 
the set of 3-F symbols. In some cases, these restrictions are expressible as explicit 
formulas and thus become useful for reduction of tables and when manipulating 
the 3-F symbols. We give here a couple of examples of this. 

(i) The adaptation to a cyclic double group C* described in Sect. 3.4 implies 
for the 3-F symbols a relation of the form 

E ~(Yl, y~) e-iY'2~/nS(Yz, Y~) e-iy22~/~6(Y3, Y~) e-ir32~/n(Fl F2 F3 / 

= (  F1 F2 r3) 
Yl "Y2 Y3 /3 
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or 

F2 r3)  (F1 F2 F3) 
\Yl 3'2 Y3 /3 )'1 Y2 Y3 /3 

which gives the "selection rule" 

( F ,  r 2 F 3 ) # 0 ~ Y l + Y 2 + 3 / 3  ~ 0  ( m o d n ) .  (3.5.2) 
3/1 3/2 0//3 13 

This rule and the derivation of it of  course have only meaning when the yi are 
numerical component designations. Thus, as explained in Sect. 3.4, for irreps of 
the third kind it will be necessary to translate - in the obvious way - components 
which we for other reasons name with letters into numbers to be able to apply 
the selection rule. 

An extreme case of this kind of rule (resulting from adaption to C* for all 
n = 1, 2, 3 , . . .  simultaneously) is the rule 

(J' J2 J3)r (3.5.3) 
ml m2 m3 

satisfied by the 3-j symbols of R3* [1, Sect. 6] and the corresponding rule for the 
D*~ ~ C *  3-F symbols [2, Sect. 2]. 

(ii) In many of  the examples to be treated below, there is a group element S (in 
fact, always C Y*) with the property that for every standard matrix irrep F the 
matrix F(S) is a permutation matrix, possibly with varying phases added on the 
non-zero entries. This makes for useful relations between different 3-F symbols. 
Examples include ([1], formula (6.6)), the hierarchy DR ~ C *  ([2], formula (2.4)) 
and the hierarchy I* 2 C5" [5] for the latter of which the 3-F symbols satisfy the 
relation 

--Yl --]/2 --Y3 /3 \3/1 Y2 Y3 /3 

for all y], 3/2, 3/3 (3.54) 

with the numbers j(Fi) suitably defined. 

3.6. 3-F symbols for double groups of improper point groups 

Given 3-F symbols for the double groups of  the proper point groups and the 
definitions in Sect. 2.2 of double groups of improper point groups, there is a 
natural way to define 3-F symbols for the lattter groups. We distinguish the same 
two cases as in Sect. 2.2: 

(i) Suppose G is a point group containing the inversion. Then G* is of the form 
Go* • $2, where Go is a proper point group. The irreps of G* are thus all of  the 
form rg  or Fu, where F is an irrep of Go* and Fg is its direct product with the 
totally symmetric (gerade) irrep A s o f  S2 and Fu its direct product with the 
ungerade irrep Au of $2. We then take as 3-F symbols for G* those of G* with 
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parity added in the obvious way, i.e. 

(rl  :(r 
•1 ")/2 Y3 / / 3  ")/1 ')/2 ~/3 /3 

G* G* 

if an even number of the parity labels Pl, P2, P3 are ungerade and 

F,p, F2p2 Fap3)=0 (3.6.2) 
")/1 ")/2 ")/3 / 

otherwise. 

(ii) If  G is an improper group which does not contain the inversion, its double 
group is of the form (G')* where G' is a proper point group, and so we directly 
have the 3-F symbols for G* by having those for (G')*. 

Thus the rest of the present paper and the following papers in the series [2, 3, 
4, 5] will concentrate on 3-F symbols for double groups which are subgroups of 
R*. 

4. The actual generation of phase-fixed 3-1" symbols for the double groups 

4.1. Introduction 

Having discussed the general theory of 3-F symbols in [1] and the specific features 
which are common to all or several of the double groups in the preceding sections 
of the present paper, we now address the practical problem of actually obtaining 
complete sets of 3-F symbols for these concrete groups. 

In general, given a simple phase group ([1] Sect. 4), it is a non-trivial problem 
just to find any collection of matrix irreps and corresponding 3-F symbols. For 
the point groups and their double groups, the group structure and representation 
algebra are so well understood that this problem has already been solved in 
various ways. (Due credit will be given, below and in the following papers of 
this series [2-5], to earlier work in the field). Thus, what we believe to be original 
in the present contribution is the presentation of 3-F symbols which obey the 
general formulas described above, which are real, and which are phase-fixed in 
the sense to be discussed in Sect. 4.4. 

4.2. The standard matrix irreps of the rotation double group R*3 

In ([1], Sect. 6) we briefly discussed the conventional choice of standard matrix 
irreps ~EJ3, j = 1/2, 1, 3/2, 2 , . . . ,  for R3* and the 3-j symbols which are a choice 
of real 3-F symbols corresponding to the irreps ~ 3 .  Some key references to the 
abundant literature on R* were given there. We add here that the irreps @t Jl are 
often thought of as being generated by the action on function bases {Ijm)} of 
operators ~ (R)  representing the group elements R, as expressed in the following 
equation: 

J 
~(R)[jm)= ~, ~)U](R)m,mljm' ). (4.2.1) 

m'=--j 
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Several concrete realizations of such function bases and corresponding operator 
representations ~ of R* are described in the literature [10, 11]; however, once 
the matrix irreps @[J] are given (an explicit formula exists - see [9, App. D]) it 
is sufficient for our present purpose to take the symbols ~3(R) and tim) to be 
defined by (4.2.1). Discussions of some of the differing conventions present in 
the literature regarding basis functions and standard matrix irreps of R* may be 
found in [12, 13]. 

4.3. Subgroup 3-F symbols by transformation and renormalization of 3-j symbols 

Given an irrep ~[J] of R* (see Sect. 4.2) and a proper subgroup G c  R*, the 
representation obtained by restricting ~[J] to G will, in general, be reducible, 
and one may find unitary matrices ~ with the property that the representation 
R ~ ~ [ J ] ( R ) $ * ,  R ~ G, is a matrix direct sum of matrix irreps ~ of the subgroup. 
For a given such g" we may focus on submatrices $j~r of S which specifically 
produce F from @[Jl in the sense that 

~J~r~tJ](R) = ~(R)~  Jar for all R ~ G. (4.3.1) 

The branching multiplicity index (or repetition index of the first kind [14]), a, 
allows for the possible existence of several linearly independent submatrices Nj~r 
with property (4.3.1). The elements s(jm, jaFy) of the adjoint (transpose and 
complex conjugate) matrix (N~r), may be viewed as coefficients defining new 
basis functions 

J 
[jaFT)-= E s(jm, jaFT)ljm) (4.3.2) 

which under the operators ~3(R) transform as ~7: 

~(R)ljar y) = 2 r(R)r,,ljar3,') (4.3.3) 

(cf. Eq. (4.2.1.)). We shall call the coefficients s(jm, jar3,) subduction coefficients. 
(This term has been used before in the literature [15], and several alternative 
terms exist: decomposition coefficients [14], expansion coefficients [16], and just 
transformation coefficients [17, 18]). Subduction coefficients may be used for the 
construction of triple coefficients for G from 3-j symbols ([1], Sect. 6). If  e is a 
column of triple coefficients ([1], Sect. 3) for an ordered R*-irrep triple 
@[J,]@[Jl]~[h] and N j:y, subduces ~[J,] to the irrep F~ of G, i = 1, 2, 3, the complex 
conjugate of the column [5 :'~r~ | is a column of triple coefficients 
for F 1 ~'~2r 3 : 

IF L(R) | FI(R) | ~3(R)][~ J1 ~ | ~gJ::~ | NJ::~]c 

= [ ~ l ( e ) ~ h a , r ~  |174 

= [~Jl alF1 ~ [J~](R) | NJ2%r2~[Jl](R) @ ~j3a3r3 ~ [J3](R)]c 

= [~j,a~r, @ Sjlalr2@ 5j3%r3][~Ej,l(R) | ~t:2](R) | ~[j31(R)] ~ 

= [~J'a'rl| ~J2%rlQ.~gJ:53]c for all R e G. (4.3.4) 
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If  the R3*-triple coefficients are 3-j symbols, we may write the G-triple coefficients 
thus obtained as 

Jl J2 J3 ) 

alF13/l a2r2Y2 a3~33/3 

. . . . . .  jl 
= ~ S ( J l m l , J l a l r 1 3 / 1 ) s ( J 2 m 2 , J 2 a 2 ~ ' 2 3 / 2 ) s [ ( J 3 m 3 , J 3 a 3 ~ ' 3 3 / 3 )  

mlm2m 3 m l  

J2 J3 ) .  
m2 m3 

(4.3.5) 

When the matrix forms of the Fi can be taken as given, we shall often just write 
F~ in this kind of formula. The basic idea is then to attempt a definition of a set 
of  3-F symbols for the (unordered) triple {Fl, F2, F3} ([1], Sect. 4) by putting 

( F~-(1) F~-(2) F~-(3) / 

3/1 3/2 3/3 / ~=JlalJ2a2J3a3 

: [T~3'~'Y~ (alJll3/] a2F23/2J2 a3F:3/~)123 --1/2 

•  J=(l) j=(2) J~-(3) / (4.3.6) 
\ a~(1)F~(1) 3/1 a~(2)F~(2) 3/2 a~(3)F~(3)')/3] 

for all permutations ~- of {1, 2, 3} necessary to produce the six, three or just single 
distinct permuted forms of  F1F2F3. The square root factor ensures proper nor- 
malization ([1], Eq. (4.12)). There are, however, some reservations to be taken 
before one can be sure that this definition works. 

Firstly, the G-triple coefficients obtained by (4.3.5) must form a non-zero set. To 
see that even this condition may fail, consider, e.g., the transformed 3-j symbols 

1 1 1 ) 
ElYl E13/2 E1 'Y3 

referring to the subgroup D* c R* [2]. 

If  they do form a non-zero set, (4.3.6) will always work if the three irreps Fi are 
distinct, and the permutational characteristic or transposition phase ([1], Sect. 4) 
will become 

~(FIF2F3/3)I ~ =j, alj2a2J3a3 = (-- 1)J' +J2 +~3. (4.3.7) 

From the point of view of the group G, this fixation of the permutational 
characteristic for FIF2F3/3 is completely arbitrary. 

If two or three of the Ei are identical, but the corresponding pairs jiai are different, 
Eq. (4.3.6) may not be consistent. Consider, e.g. the octahedral double group 
O* and the example Jl =3 /2 ,  j 2=2 ,  J3--5/2,  FI = U ,  F 3 = U, F2=T2  (cf. [4], 
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Sect. 3). The transformed 3-j symbols 

3 / 2 2  5/2~ and ( 5 / 2 2  3/2~ 
Uyl T2y2 UT3/ \UT~ T2yz U')/3/ 

are not generally equal and therefore they cannot be used for the construction 
of 3-F symbols of the type 

Yl Y2 3/3 /3 

by the definition (4.3.6). Even fixing, say, 3/2 to be always in the first position - 
thereby deviating from the prescription of (4.3.6) - will not help, because the 
UT2U-fix-vector thus derived is neither symmetric nor antisymmetric). 

Another, milder case is that of the icosahedral double group [5] and the example 
j l = 3 ,  j2=4,  j3 = 1 and F~=U,  F2=U,  F3=T1. For transformed 3-j symbols it 
turns out that 

( 4  3 1 ) = _ ( 3  4 1 ) 

U')/1 U'Y2 TIT3 UTI U]/2 T1T3 

for all y~, Y2, Y3. This means that it would be of importance to remember whether 
the 3-F symbols (UUT~/y~ 7273) were defined from jj2J3 equal to 341 or 431 (and 
correspondingly for the UT~U and T1UU 3-F symbols), which is clearly incon- 
venient. 

Thus, in the cases to be considered in [2, 3, 4, 5], we must always check that our 
use of  (4.3.6) is consistent and workable. When (4.3.6) is used consistently, the 
phase formula (4.3.7) will also hold for cases with identical F~. 

We have not seen an explicit discussion of these reservations for using (4.3.6) in 
the literature. 

4.4. The choice of standard basis functions 

Proceeding from the considerations of Sect. 4.3, we see that given a subgroup 
G c R*, what we need in order to obtain a complete collection of 3-F symbols 
for G by the method represented by (4.3.6) is 

(a) A choice of standard matrix forms F of the irreps F of G. 
(b) A choice of j-triplets for all F-triples, sufficiently many to supply the required 

number of linearly independent sets of 3-F symbols for triples F~F2F3 with 
multiplicity (i.e. with dim o~(FIF2F3)> 1 ([1], Sect. 4)). 

(c) A choice of standard subduction coefficients for all corresponding F and j 
selected in (a) and (b). 

In practice, items (a) and (c) are intimately connected, (c) in fact implying (a), 
but (a) may also be influenced by conditions expressible without talking about 
subduction coefficients - in our treatment of the double groups, chiefly the 
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adaption to a cyclic subgroup C* and sometimes intermediate groups in a 
hierarchy G ~ . . .  ~ C*. We shall speak of (a)-(c) as the process of  choosing 
standard basis functions for the irreps of G. 

In [6], collections of 3-F symbols for the crystallographic point groups were given 
which were phase-fixed in the non-trivial sense that they were generated by a 
minimal number of standard basis functions, the phases of which were fixed by 
a few very simple rules. In the present work on the double groups, the choices 
of standard basis functions we have made can - in retrospect - be described by 
the rules given below. Since the rules are so elaborate and not even completely 
explicitly expressed, we admit that the term "phase-fixed" looses some of its 
significance here; however, the 3-F symbols generated are still, undeniably, 
phase-fixed in the sense that their phases are dictated by the standard basis 
functions instead of being arbitrarily chosen. See further remarks on phase- 
fixation in Sect. 5. 

As for the choice of function bases for individual subgroup irreps, the rules we 
have followed are: 

(1) Lowest possible j values are chosen, except that when more than one basis 
set is needed for a given irrep, each new basis is chosen from a new j set. The 
lowest j-value assigned to an irrep of G is called its primary j-value. 

(2) Only irreps of  the first kind may have such supplementary bases. 
(3) The basis functions chosen within each of the j sets selected by (1) and (2) 

are fixed so far as to ensure that the matrix irreps they generate are adapted to 
the subgroup hierarchy G D G~ ~ G2 ~ �9 �9 �9 ~ C* in question. 

(4) The primary basis functions for all irreps are further adjusted so as to make 
the 3-F symbols 

1o0 
real; in situations of  the type described in ([1], Sect. 5.5), the relationship 

( ~  1~0 F')  =(dimF)-u2F(R~ (4.4.1) 

should further be satisfied. 

At this stage, a first check is made on the 3-F symbols generated by the preliminary 
basis functions found by the application of  (1)-(4). If  not all 3-F symbols are 
real, further restrictions are placed on the basis functions to ensure a maximum 
number of  real 3-F symbols. If  not all 3-F symbols can be made real, it is attempted 
to have at least those for triples of three vector irreps (cf. Sect. 2) real. 

After this, there will generally be one or several free phases still to be decided 
upon within each basis set. These remaining phases are fixed by application of  
the following hierarchial set of  rules (5)-(8), starting for each irrep F with the 
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primary basis set and proceeding with increasing j values if there are supplemen- 
tary bases: 

(5) A maximal number of subduction coefficients s(jm, jaFy) should be real. 
(6) A maximum number of the real subduction coefficients should be positive. 
(7) A maximum number of real coefficients s(jm, jaFy) with m > 0 should be 

positive. 
(8) A maximum number of real coefficients of the particular type s(jj, jaFy) 

should be positive. 

Once all the standard basis functions have been chosen, they are applied using 
the following further rules hierarchially: 

(9) If two of the irreps in a triple are equivalent and neither one is equivalent 
to the third irrep, it is the latter one which shall have supplementary bases in 
order to produce the sufficient number of linearly independent sets of 3-F symbols. 
(10) Triplesjlj2j3 o f j  values corresponding to F I F 2 F  3 a re  chosen so thatj l  +J2 "q-J3 

is minimal. 

These rules warrant several further comments: 

If the subgroup hierarchy alluded to in (3) is canonical, i.e. with no branching 
multiplicities at any place in the hierarchy, the basis functions corresponding to 
the various irrep components, regarded individually, will be fixed up to a phase 
factor. However, since focusing on canonical hierarchies may prevent one from 
having other desirable properties of the matrix irreps or the 3-F symbols, we 
shall also consider non-canonical hierarchies (see [3] for T* D C*). 

Rule (4) is only concerned with primary bases because these empirically are 
sufficient to generate the 3-F symbols (F1 ~F/TOy'). (This would not be the case 
if we were studying the cyclic double groups.) In all the cases where we have 
established (4.4.1), we have Ro = C~* (cf. Sect. 2.1). 

Note that if all subduction coefficients are real, all 3-F symbols will also be real 
(this is a trivial, but useful, consequence of (4.3.6)). 

The above rules have the particular consequence that the totally symmetric irrep 
1 ~ is always assigned the standard basis function Ijm) = 10 0). This again implies 
that (1 a 1 ~ 1 ~ /000)= +I so that in all formulas involving the conjugated s}cmbol 
T~, the bar may be removed without consequences. 

A straightforward calculation then further shows that if F is of the first or second 
kind, we shall have A ( F I ~ F ) = ( + I )  for the Derome-Sharp A matrix ([1], Sect. 
5.4) of the triple FI~F.  

If F is a third-kind irrep ([1], Sect. 5.2), it will be assigned just one j value, and 
I~ will be assigned the same value j. Since 

1o0~ 1 0~ 
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by ([1], Eq. (6.8) or Eq. (6.9)), we have for the 3-F symbols: 

(F  1~ F )  ( r  1~ F)  (4.4.3) 
3' 0 3" =(-1)zJ 3" 0 3' " 

(In the cases we have dealt with, there is never any branching multiplicity for a 
primary j-value.) Recalling the fact that (-1) 2j= +1 when ~tJa (and thus F) is a 
vector irrep (Sect. 2) and (-1) zj= -1 when ~EJl (and thus F) is a spin irrep, we 
may draw the following two important conclusions: 

Firstly, the phase ~-('F1QF) (see [1], Sect. 4) satisfies the relations 

~-(F1GI~) = { + i  when F is a vect~ irrep ~ third kind (4.4.4) 
when F is a spin irrep of the third kind. 

With the definition of ~r(FI~F) for first- and second-kind irreps set up in ([1], 
Sect. 5.3.2), (4.4.4) holds for all three kinds of irreps in the non-commutative 
double groups thanks to the correspondence first-kind~-->vector and second- 
kind <-> spin noted in Sect. 2. An implication is that for any triple F1F2F3 with 
dim ~-(FIF2F3) > 0 we have 

~'(F11Gf'0qr(F21GFz)qr(F31 ~F3) = +1, (4.4.5) 

in all the non-commutative double groups (cf. Sect. 2.1). This property ensures 
the "associativity of the invariant triple product" [1, Sect. A.4]. (Note again that 
(4.4.4) does not hold in the cyclic double groups. The example of C* (Sect. 2) 
may be used also here.) 

Secondly, by invoking also the above remark regarding T~, we may evaluate the 
A matrices ([1], Sect. 5.4) for the triples F lcF  and FI~F when F is of the third 
kind. We note that there must be a complex phase ~o(F, F) such that 

F 1~,~ =oJ(F,~)(dimV)_l/2a(3', 3") forall 3'and 3" (4.4.6) 
3" 0 3' / 

(cf. [1, Eq. (5.3.9)]). We then have 

~' 3/ 0 3" 7 0 7' 

1o ,o  
~' 3" 0 3" 3' 0 y' 

= ~- ( r l~ f )  Z a(3', 3"),o(r, f)a(3', 3"),,,(r, F)(dim F) - l  
y,y' 

= { +(w(F, F))~ for F a vector irrep 
L -  (w-~, f))2 for F a spin irrep 

= A(F 1GF), (4.4.7) 
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which shows that if our 3-F symbols in (4.4.6) are real and thus to = +1 or w = -1  
- which we shall actually always have them to be - then the A matrix is necessarily 
( - 1 )  when F is a spin irrep (cf. the discussion in [1], Sect. 5.4). 

Two somewhat  more lengthy comments have been given separate subsections 
below (Sect. 4.5 and 4.6), and some further remarks on the literature etc. are 
collected in Sect. 5. 

4.5. Phase changes of subduction coefficients associated with rotation 
around the Z axis 

Considering the 3-j symbol property (3.5.3), one may observe that changing a 
given set of  subduction coefficients s(jm, jaFv) by choosing a real number  
with 0 < a < 2~r and putting 

s~ (jm, j a r  y) = e-imPs (jm, jaF y) (4.5.1) 

leaves the transformed 3-j symbols, defined as in (4.3.5), unchanged. This may 
appear  to be of  limited interest, since the subduction coefficients s(jm, jaFy)  
must generally generate a matrix form of F different from r .  However, we shall 
analyse now the significance of the s~'s. 

The double group G we are considering is a certain subgroup of R3* (Sect. 2). 
By specifying r 0, qs for each of its elements we get, in principle, also information 
on the axes of  rotation and angles of rotation of the ordinary rotations to which 
the double group elements correspond. Now consider the double group element 

Z* 
C27r/oL "= ~[l/2](a, 0, 0) (4.5.2) 

corresponding to a rotation about the Z axis through the angle a. This element 
is represented in the standard matrix irrep NuJ ( j  being any of the numbers 1/2, 
1, 3/2, 2 , . . . )  by the matrix defined by 

~EJltt~z* ~ -- 8(m, m') e -ir"~ (4.5.3) k ~... 21r/aJmrn. --  

Thus the coefficients s~ defined in (4.5.1) are elements of  the matrix ($~ar),, where 

$jar = CJaro~EJlt r,z* ~--1 (4.5.4) 

I f  g is any element of  G, we have, using the homomorphism property of  @u] 
and then (4.3.1), that 

g ~ o r ~ m ( . ~ z *  , ~ *  , i ,  
t-2,-,t,~gt t-2~l,~) ) 

~.~jaro-'~[j]{ f'~Z* "~-lo~[j]{ f , Z *  ~o~[ j ] [~]o~[ j ] [  f ~ Z *  "~-1 
k 2 ~ /  ] k 2or~a) ~.gl \ 2"rr/a) 

= ~ j ~ r ~ m ( g ) ~ U ~ ( C f , ; / ~ ) - l  

= F ( g ) s j o r ~ u j ( w z *  ~ 1 

= r ( g ) g {  ~ (4.5.5) 

This calculation shows that the matrix N{~r subduces the irrep @M, acting on 
#'~Z* {Zd{ f ' ,Z*  ~--1 the "rotated group"  G~ = ,--2,~/~,-,t~2~/~J , to the matrix form F of F. The 
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group G is obtained by rotating the axes of the R3-elements corresponding to 
the elements of G through an angle a about the Z axis; it is isomorphic to G 
(and, as seen from its definition, in fact conjugate, in the subgroup sense, to G 
within R*). 

Another way of  expressing the same facts is to say that by introducing the 
coefficients s~, we have changed from the basis functions [jaFy) in (4.3.2) to 
functions IjaFy)~ defined by 

I j a r y L  = • e-im~s(jm, jaFy)ljm) 
m 

@U( cZ* ~ ~ "m " =Y. s(jm, jaFy) E 2~r/o~)Jrn'rnlJ ) 
tel m '  

= y, s(jm, jaFy){~(C2~/~)lJm)}, (4.5.6) 
m 

i.e. obtained by "rotating the [jm) functions by a around the Z axis", and then 
performed the subduction by the matrix S*. 

Note that the functions [jaF7)~ for a given F may well be mixtures of functions 
I jaFy) with several different ff and F. Examples where this remark is relevant 
will be discussed in [4, 5]. 

In conclusion, if we rotate the axes of the rotations corresponding to the elements 
of our double group about the Z axis an angle a and consider the new copy of 
the double group generated, we may keep our matrix irreps and transformed 3-j 
symbols by defining new subduction coefficients by (4.5.1). We shall make use 
of this in our treatment of the double groups for obtaining, by a judicious choice 
of coordinate system, the simplest possible subduction coefficients once the matrix 
irreps and transformed 3-j symbols have been decided upon ("simplest possible" 
referring to rules (5)-(8) in Sect. 4.4). 

(The phases involved in the rotations we are discussing here seem to be a special 
case of  the "orientation phases" discussed in [19-21].) 

4.6. An orthogonality property of the subgroup-adapted 3-j symbols 

Suppose G is a double group and we are constructing 3-F symbols for a G-irrep 
triple F1F2F3 with multiplicity by the above procedure (Sects. 4.3-4.4). We require 
an orthonormal basis ( ~ , . . . , c N )  for the fix-vector space ~(FtF2F3) [much 
of our formalism depends on this requirement]. The question is whether the 
several triples of j-values assigned to FIF2F3 by the rules given above automatically 
lead to mutually orthogonal sets of  3-F symbols. It turns out that this may be 
answered in the affirmative, and we shall now discuss this more closely. 

As a matter of experience, every time we are in the situation just described, the 
following particular further conditions are fulfilled: Two of  the irreps, F1 and F2 
say, are "spherical" in the sense that there are irreps ~tJ~l and @E41 of  the rotation 
group which remain irreducible upon restriction to the subgroup in question and 
become equivalent to F~ and F2, respectively. Furthermore, all j-triples assigned 



Phase-fixed double-group 3-F symbols. II 383 

to the irrep triple FIF2F3 are of the particular form JJ2J, where Dj is a rotation 
group irrep yielding F3 at least once when restricted to the subgroup. Thus, any 
set of 3-F symbols (FIF2F3/y~yzy3)~ will be constructed in the procedure by 
normalizing subgroup-adapted 3-j symbols of the form (jlj2j3/FlylF2yea3F3T3). 

Suppose that two triples j~j2j' and JtJ2J" with corresponding branching multi- 
plicity indices a~ and a~ correspond to two different multiplicity indices/3' and 
/3". We wish to show that the coefficients (F~ F2F3/y~ Y2 Y3)~, and (F1F2F3/y~ Y2Y3),B" 

form mutually orthogonal sets, i.e. that 

(4.6.1) 

~lT2~Y3 'Yt ")/2 ")/3 13' "Yl ')/2 "~3 ~" 

Now, the left-hand side of (4.6.1) is, by the construction, proportional to 

v,z,2v3 FlY1 F2T2 a;F3Y3 F1T1 F2Y2 a~FaY3]" 

By convention (1) in Sect. 4.4, we have j ' r  Then an argument completely 
analogous to the one leading to Eq. (A.3.3) in [1], applied here to the involved 
rotation group irreps D j,, Dj2, Dj,, and Di~ in their subgroup-adapted matrix forms, 
shows that (4.6.2) is zero, as desired, and in fact even that 

( jl  J2 J' ) (  Jl j2 a "pj" ] =0  (4.6.3) 
v, v2 I',T, F2T2 a3F373/\F1Yl F2Y2 313'~3/ 

for every 3'3- 

This orthogonality property of the subgroup-adapted 3-j symbols not only has 
interest for the reasons already mentioned; it is also invoked in the proof needed 
in several multiplicity cases that the subgroup triple coefficients constructed 
actually do form sets of 3-F symbols (see, e.g. the discussion of 3-F symbols for 
the tetrahedral triple T I T  in [3]). 

5. Concluding remarks 

The procedure which we have discussed above for obtaining double group 3-F 
symbols has also been described by Lulek [14] and has been used by Kibler et 
al. [22] in the case of the hierarchy R3* ~ O* D D4* ~ D*; formulas like (4.3.5) 
also appear with K6nig and Kremer [16] and Butler [17]. In Lulek's nomenclature 
the subgroup-adapted 3-j symbols of (4.3.5) are called 3j symbols [14] or 3jFT 
symbols [23]. 

In [16] it is claimed - and the same idea seems to be present in [23] - that it is 
essential for the permutational properties of the resulting subgroup 3-F symbols 
that a positive normalization constant is used in Eq. (4.3.6). This is evidently not 
so; we suggest a positive number to have a definite procedure, but a common 
phase on all numbers in a given set of 3-F symbols would not alter its permuta- 
tional properties. 
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When actually carrying out the procedure outlined in Sect. 4, for the groups 
discussed in [2-5], we of  course needed concrete basis functions of the type 
(4.3.2). There is a rather vast literature dealing with methods for the construction 
of such basis functions, but we shall not discuss that here; in all our cases, basis 
functions were either obtainable by immediate inspection or could be obtained 
by suitable manipulation from the functions already given in the literature. (See, 
though, a remark in [24, w 8] regarding necessity of having basis functions for 
high j-values.) 

The discussion towards the end of Sect. 4.3 clearly demonstrates that one has to 
distinguish between the standard basis functions we choose and functions which 
just transform the standard way. In multiplicity cases like the triple UT2U of the 
octahedral double group mentioned there, it may have rather dramatic conse- 
quences to replace the standard functions, in casu [~Uy), by other functions 
transforming correctly, like ]~Uy). In multiplicity-free groups, the difference can 
never amount to more than a phase change (if the two function sets being 
compared both generate non-zero subgroup triple coefficients and thus 3-F 
symbols). On the other hand, in some cases phase differences inevitably occur 
between 3-F symbols corresponding to independent choices of basis functions 
transforming the standard way; this follows from the unitarity of matrices of 
isoscalar factors (see [6] for a discussion of specific examples). Quite the contrary 
seems to be assumed in [25]. 

A computer program has been developed which calculates the subgroup-adapted 
3-j symbols according to (4.3.5), using for (jlj2J3/mlm2m3) the explicit formula 
(e.g., [26], Eq. (1.5)), and the normalization constant in (4.3.6) according to its 
defining expression. The results are expressed by square roots of rational numbers 
when the subduction coefficients are of this form. An analogous programme for 
the exact calculation of coupling coefficients of R3* in such a root-rational-fraction 
form has been described in [27]. 

[A word may be in place on the calculation of the normalization constant in 
(4.3.6). Formulae exist [28] which, in principle, allow one to calculate such 
quantities - at least in the case of no branching multiplicities, that is, the ai in 
(4.3.6) superfluous - as a combined integral over the group R* and summation 
over the finite group in question, using only the characters of the six irreps 
involved. These formulae did not to us seem suitable, if applicable at all, for 
computer calculations.] 

Ongoing work aims at making the programme calculate also Derome-Sharp A 
and B i matrices ([1], Sect. 5.4) and coupling coefficients according to ([1], formula 
(5.3.16)) and further to calculate 6-F and 9-F symbols and recoupling coefficients 
as they are defined in the formalism under development [24, 29]. 

It is worth noting that the exposition we have given in [1] and in the present 
paper descends through a hierarchy of levels of generality. One may stop at any 
level desired and use the results established until there. Thus the generalities of 
[1] and Sects. 2 and 3 above together with the general procedure outlined in Sect. 
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4.3 provide a framework which is applicable whether or not one would like to 
use our suggestions for choices of basis functions in Sect. 4.4. 

Especially the phase choices on the basis functions are, of course, somewhat 
arbitrary; we ourselves shall feel free to make other phase choices in the future 
if this seems useful. The important feature to us is the fundamental fact that the 
procedure we describe fixes the phases for the entire Wigner-Racah algebra in one 
step by fixing the phases of the basis functions. This is evident because of the 
"Aufbau"  way we construct the algebra with 3-F symbols as the basic quantity 
(see [1] in combination with [24, 29] for the 6-F and 9-F symbols and recoupling 
coefficients). This is to be contrasted with the almost "orthogonal" approach 
adopted by Butler [30, 21] (which he himself calls a "building up principle" [31]) 
which of course should lead to an equivalent apparatus in the last end. With 
Butler, the basis functions, the matrix irreps they generate, and the "3-jm symbols" 
(normalized triple coefficients in our terminology) are the last things to be 
calculated, not the first ones, and pieces of information such as placement of 
coordinate system and matrix irreps are only obtainable through a very involved 
discussion. The initial steps are the calculation of "6-j symbols" and "3-jm 
factors" (the latter being quantities related to our normalization constant in 
(4.3.6)) by a recursive procedure. The phase fixations begin here and are made 
in a not very transparent way; at least their connection with the "3-jm symbols" 
- which are to represent (through the Wigner-Eckart  theorem ([1], Sect. 2)) the 
operators whose phases we are really interested in - is not clear. 

We further point out that the basis functions really only play a dummy role in 
our procedure. What matters is the subduction coefficients and the explicit 
knowledge of the matrix irreps and 3-F symbols of the parent group R*, and 
wherever this kind of information is present for a group and a subgroup of it, 
the procedure may, in principle, be applied. (See remarks on studies of new 
groups in [24, w 6.1].) 

Appendix 

In this appendix we give some mathematical arguments which are relevant to 
the discussion of various sufficient conditions for the existence of real 3-F symbols 
(see Sect. 3.2). 

Suppose that ~'x, ['2, ~3 are unitary matrix reps of a group G. If the linear 
space o~(l'lr2r3) of column fix-vectors for Fl |174 has dimension at 
least one and is stable under complex conjugation, or, for short, o~(F~F2I'3) is 
conjugation stable [meaning that ~ ~ ( F l r 2 1 " 3 ) ~  o~(Fl~"21"3)], then 
there exists - and only then does there exist - an orthonormal basis for 
@(F~F2r3) consisting of real column vectors. This again ensures the existence 
of real 3-F symbols ([1], Sect. 4) for FIF2F3 (provided the triple is simple phase 
([1], Sect. 3.2) if 1~ = F2=~3). 

The fact that conjugation stability implies the existence of a real orthonormal 
basis for ~-=~-(F~F2~'3) is easily ascertained: Since the Gram-Schmidt  
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o r t h o n o r m a l i z a t i o n  p r o c e d u r e  a p p l i e d  to a real  basis  will  y ie ld  a real  o r t h o n o r m a l  
basis ,  it is sufficient to show that  there  exists a real  basis  for  ~.  To see that  this 
is t rue,  s tar t  by  p ick ing  any vector  r in ~-. Since e l ~ ,  the  real vectors  
r +c l  and  i ( e l - ~ )  are  also in o~, and  these  two vectors  toge the r  span  the 
same subspace  o f  o~ as do e~ and  El together .  Con t inue  by  p ick ing  a vec tor  
c2 # ~ in the  o r t hogona l  c o m p l e m e n t  in o~ to this subspace  . . . .  At  the  end,  a 
real  vec tor -se t  ( e l + ~ ,  i ( e ~ - ~ ) ,  ~2+~2, i ( e 2 - ~ 2 ) , . . . )  genera t ing  o~ is 
o b t a i n e d ,  and  f rom this a real  basis m a y  be selected.  Q.E.D.  

The c o n d i t i o n  tha t  ~ ( F 1 F f f 3 )  is con juga t ion  s table  is, for  example ,  fulfi l led 
in the  fo l lowing  two pa r t i cu l a r  s i tuat ions:  

(1) There  is a genera t ing  set Me_ G such tha t  for  each  R ~  M, the mat r ix  
F ~ ( R ) | 1 7 4  is real. (The con juga t ion  s tabi l i ty  is here  evident) .  

As a spec ia l  case o f  this  we note  the s i tua t ion  where  the  F~ are all real matr ix  reps. 

(2) There  is a genera t ing  set M ~ G such that  for  each  R ~ M, the  matr ices  F I ( R ) ,  
F2(R) ,  and  F3(R)  are  all symmetric. Proof  o f  the con juga t ion  s tabi l i ty  in this  
s i tua t ion:  Suppose  tha t  ~ ~ o~. We have to show tha t  ~ c ~ ,  i.e., tha t  

[FI(R)| = r for  all R ~ G. (n .1)  

Now,  given R ~ G, we know f rom the  facts  tha t  R - l  ~ G and  e c  f f  tha t  

[f' ,(R-I)|174 = z. (A.2) 

C o n j u g a t i n g  on bo th  sides o f  this equa t ion  and  us ing  the uni ta r i ty  and  the a s sumed  
t r an spos i t i on  s y m m e t r y  o f  the F~(R),  we get  

~. = [F,( R-')|  R-')|  R-')]~. 

= [r,(R) T | |  

= [F,(R)|174 (A.3) 

as des i red .  
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